The Influence of Canalization on the Robustness of Boolean Networks
نویسندگان
چکیده
Timeand state-discrete dynamical systems are frequently used to model molecular networks. This paper provides a collection of mathematical and computational tools for the study of robustness in Boolean network models. The focus is on networks governed by k-canalizing functions, a recently introduced class of Boolean functions that contains the well-studied class of nested canalizing functions. The activities and sensitivity of a function quantify the impact of input changes on the function output. This paper generalizes the latter concept to c-sensitivity and provides formulas for the activities and c-sensitivity of general k-canalizing functions as well as canalizing functions with more precisely defined structure. A popular measure for the robustness of a network, the Derrida value, can be expressed as a weighted sum of the c-sensitivities of the governing canalizing functions, and can also be calculated for a stochastic extension of Boolean networks. These findings provide a computationally efficient way to obtain Derrida values of Boolean networks, deterministic or stochastic, that does not involve simulation.
منابع مشابه
CANA: A python package for quantifying control and canalization in Boolean Networks
Logical models offer a simple but powerful means to understand the complex dynamics of biochemical regulation, without the need to estimate kinetic parameters. However, even simple automata components can lead to collective dynamics that are computationally intractable when aggregated into networks. In previous work we demonstrated that automata network models of biochemical regulation are high...
متن کاملCanalization and Symmetry in Boolean Models for Genetic Regulatory Networks
Canalization of genetic regulatory networks has been argued to be favored by evolutionary processes due to the stability that it can confer to phenotype expression. We explore whether a significant amount of canalization and partial canalization can arise in purely random networks in the absence of evolutionary pressures. We use a mapping of the Boolean functions in the Kauffman N-K model for g...
متن کاملCanalization in the critical states of highly connected networks of competing Boolean nodes.
Canalization is a classic concept in developmental biology that is thought to be an important feature of evolving systems. In a Boolean network, it is a form of network robustness in which a subset of the input signals controls the behavior of a node regardless of the remaining input. It has been shown that Boolean networks can become canalized if they evolve through a frustrated competition be...
متن کاملSymmetry in critical random Boolean network dynamics.
Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at ...
متن کاملMolecular network control through boolean canalization
Boolean networks are an important class of computational models for molecular interaction networks. Boolean canalization, a type of hierarchical clustering of the inputs of a Boolean function, has been extensively studied in the context of network modeling where each layer of canalization adds a degree of stability in the dynamics of the network. Recently, dynamic network control approaches hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016